

INSTRUÇÕES DE USO

KIT XGEN MULTI COVID-19/FLU/HRSV

KIT MULTIPLEX PARA DETECÇÃO DOS VÍRUS SARS-COV-2, INFLUENZA E VÍRUS SINCICIAL RESPIRATÓRIO HUMANO

1. USO PRETENDIDO

O Kit XGEN MULTI COVID-19/FLU/HRSV é um teste *in vitro* para a detecção qualitativa de ácido nucleico em amostras respiratórias, utilizado no auxílio da detecção de infecções por SARS-CoV-2, Influenza A/B e Vírus Sincicial Respiratório Humano A/B. O kit não diferencia os subtipos A e B dos vírus da Influenza e HRSV.

O kit foi otimizado para uso em conjunto com aparelhos de PCR em Tempo Real.

PRODUTO PARA DIAGNÓSTICO DE USO IN VITRO.

2. INTRODUÇÃO

Os coronavírus são vírus de RNA positivos de fita simples, membros da subfamília Orthocoronavirinae da família Coronaviridae (ordem Nidovirales). Essa subfamília abrange quatro gêneros: Alphacoronavírus, Betacoronavírus, Gammacoronavírus e Deltacoronavírus, de acordo com sua estrutura genética. Os alfa-coronavírus e os betacoronavírus infectam apenas mamíferos e geralmente causam infecções agudas do trato respiratório em humanos e gastroenterite em animais. Até o aparecimento da SARS-CoV-2, seis alfa e betacoronavírus haviam sido descritos em humanos. Quatro deles (HCoV-NL63, HCoV-229E, HCoV-OC43 e HKU1) causam um número considerável de infecções leves do trato respiratório superior em adultos imunocompetentes, podendo causar sintomatologia mais grave em crianças e pacientes geriátricos principalmente no inverno. Os Betacoronavirus SARS-CoV e MERS-CoV, ambos patógenos emergentes, provocaram dois surtos que causaram graves infecções respiratórias epidêmicas em escala global devido à sua morbidade e mortalidade. O SARS-CoV-2 betacoronavírus é o sétimo coronavírus isolado e caracterizado, capaz de causar infecções em humanos.

O SARS-CoV-2 foi identificado pela primeira vez na China em dezembro de 2019 como um agente viral que causa infecções do trato respiratório com sintomas como febre, tosse seca e insuficiência respiratória. Em casos mais graves, a infecção pode causar pneumonia, insuficiência renal e morte. A transmissão ocorre por contato direto com pessoas infectadas ou por saliva, tosse ou espirro.

Os vírus da gripe pertencem à família *Orthomyxoviridae* e causam a maioria das infecções virais do trato respiratório inferior. Os *Influenzas A* e *B* são causas significativas de morbimortalidade em todo o mundo, considerando que idosos e indivíduos comprometidos apresentam risco especial de desenvolver doenças graves e complicações como a pneumonia. Indivíduos acometidos podem sentir sintomas como febre ou sensação febril/calafrios, tosse, dor de garganta, congestão nasal e coriza, mialgia, dores de cabeça e anorexia. Os vírus da gripe podem ser transmitidos de pessoa para pessoa de duas maneiras diferentes: por contato direto ou indireto e pelo ar (gotas e aerossóis provenientes de espirros e tosse).

Influenza A e B são vírus de RNA de fita simples, com envelope que contém oito fitas segmentadas de RNA do genoma, que normalmente codificam 11 ou 12 proteínas virais. O envelope viral, derivado da membrana plasmática do hospedeiro, consiste em uma bicamada lipídica contendo proteínas transmembrana, como hemaglutinina (HA) e neuraminidase (NA), e proteínas de matriz M1 e M2. Os vírus da Influenza A são ainda classificados em subtipos com base na antigenicidade de suas moléculas "HA" e "NA", enquanto o Influenza B é dividido em 2 linhagens antigenicamente e geneticamente distintas, Victoria e Yamagata.

Os Vírus Respiratórios Sinciciais (HRSVA e HRSVB) pertencem à família Paramyxoviridae e são uma importante causa de infecção no trato inferior respiratório em todos os grupos etários. O genoma é constituído RNA. A maioria das infecções ocorre durante o inverno. O RSV é de particular importância como causa de infecções severas no trato respiratório inferior em crianças nos primeiros anos de vida (causando bronquiolite e pneumonia), imunocomprometidos e idosos. HRSV pode ser transmitido quando gotículas nasais e de saliva contendo o vírus são encontrados no ar. A infecção também pode resultar do contato direto e indireto com secreções nasais ou orais. As pessoas infectadas com RSV são geralmente contagiosas durante 3 a 8 dias; pessoas saudáveis normalmente se recuperam da infecção por RSV ente 1 a 2 semanas. No entanto, a infecção pode ser grave em crianças pequenas, crianças e idosos

Neste contexto pandêmico, a RT-PCR em tempo real é a técnica mais adequada para a detecção do vírus devido à sua alta sensibilidade e especificidade, e agora é uma ferramenta de rotina em laboratórios médicos.

3. PRINCÍPIO DO TESTE

A detecção é feita no formato RT-qPCR, onde a transcrição reversa e a subsequente amplificação da sequência alvo específica ocorrem no mesmo poço de reação. O RNA alvo isolado é transcrito, gerando DNA complementar, pela transcriptase reversa que é seguida pela amplificação de uma região conservada do gene M1 para FLU A e FLU B, uma região conservada do gene N para HRSV A e HRSV B e duas regiões conservadas do gene N (N1 e N2) para SARS-CoV-2 usando primers específicos e uma sonda marcada com fluorescência.

A presença de uma sequência específica do patógeno na reação é detectada por um aumento na fluorescência, observada a partir da sonda correspondente duplamente marcada, e é relatado como o valor limiar de ciclo (*Ct*) pelo termociclador em Tempo Real. Primers e sondas fluorescentes específicos para a detecção simultânea do Gene RNaseP também estão incluídos como controle interno da qualidade da extração e amplificação.

4. ESTUDO DE DESEMPENHO

Segundo a RDC 36/2015, a sensibilidade analítica é a capacidade de um método analítico obter resultados positivos frente a resultados positivos obtidos pelo método de referência, até a menor quantidade do analito que pode ser mensurada. O limite de detecção (LOD) é a menor quantidade de cópias do alvo que pode ser detectada pelo sistema de ensaio com uma probabilidade de 95%. Já a especificidade analítica é a capacidade de um método analítico de determinar somente o analito frente a outras substâncias presentes na amostra. Por fim, o ensaio de precisão foi realizado através do resultado de um mesmo analito medido diversas vezes sob mesmas condições operacionais (repetibilidade) e sob condições operacionais distintas (reprodutibilidade). O resultado pode ser visualizado através do coeficiente de variação (CV%). Assim, os resultados foram estabelecidos conforme tabela abaixo:

Especificidade FLU A*	100% para <i>Influenza Tipo A</i>
Especificidade FLU B*	100% para <i>Influenza Tipo B</i>
Especificidade SARS-CoV-2	100% para o Vírus SARS-CoV-2
Especificidade HRSV A/B	100% para Vírus Sincicial Tipo A/B
Sensibilidade (LOD) FLU A*	5 cópias/reação
Sensibilidade (LOD) FLU B*	20 cópias/reação
Sensibilidade (LOD) SARS-CoV-2	20 cópias/reação
Sensibilidade (LOD) HRSV A/B*	10 cópias/reação
Repetibilidade	CV < 5%
Reprodutibilidade	CV < 5%

^{*}O kit não diferencia entre os subtipos A e B dos vírus Influenza e HRSV.

5. COMPONENTES

O formato padrão do kit contém reagentes para 48 testes.

COMPONENTES	CONTEÚDO	QUANTIDADE 48 TESTES
MIX CFH	Mistura de Enzimas, sondas, <i>primers</i> , tampão e dNTPs, estabilizadores e Controle Interno endógeno estabilizado	2 frascos
TR	Tampão de Reidratação	1 frasco x 1,8 mL
CP CFH	Controle Positivo contendo cDNA sintético liofilizado	1 frasco
CN	Controle Negativo	1 frasco x 1 mL
H2O	Água livre de RNase/DNase	1 frasco x 1 mL

NOTA: Cada frasco contém um volume adicional para imprecisão de pipetagem.

6. ARMAZENAMENTO E ESTABILIDADE

Os componentes do kit devem ser transportados e armazenados na embalagem original à temperatura de 2°C a 40°C. O produto estocado corretamente é estável até a data de vencimento indicada no rótulo. Uma vez que o Controle Positivo e o Controle Interno tenham sido reconstituídos, devem ser armazenados a -20°C. Após reconstituída, a MIX CFH deve ser armazenada a 2 a 8°C por até 4 horas, para longos períodos, armazenar a -20°C.

É recomendado separar em alíquotas o Controle Positivo, a MIX CFH e o Controle Interno para minimizar os ciclos de congelamento/descongelamento. O Controle Positivo, a MIX CFH e o Controle Interno são estáveis por até 6 ciclos de congelamento/descongelamento. Manter os componentes protegidos da exposição a luz.

7. MATERIAIS NECESSÁRIOS, MAS NÃO FORNECIDOS

- ✓ Agitador tipo vortex ou similar;
- ✓ Cabine de fluxo laminar;
- ✓ Luvas descartáveis sem talco;
- ✓ Microcentrífuga;
- ✓ Micropipetas Calibradas (0,5µL < volume < 1000µL);
- ✓ Microtubos livre de nuclease;
- ✓ Ponteiras estéreis com filtro;
- ✓ Racks para tubos;
- √ Placa de PCR (96 poços)
- ✓ Termociclador para PCR em Tempo Real*.

*ATENÇÃO: O equipamento deve estar com as calibrações em dia visando a qualidade e confiabilidade do teste.

8. AVISOS E PRECAUÇÕES

- 7.1 O kit deve ser utilizado somente por pessoal técnico qualificado e devidamente treinado.
- 7.2 O pessoal técnico deve ser profundamente treinado no uso dos termocicladores em Tempo Real, na manipulação de reagentes de biologia molecular e qualificados em protocolos de amplificação de PCR em Tempo Real.
- 7.3 Todo o pessoal envolvido na execução do teste deve utilizar equipamentos de proteção individual. O uso de objetos perfurocortantes deve ser evitado. Além disso, todos devem ser treinados em procedimentos de biossegurança, como recomendado pela legislação em vigor.
- **7.4** Os responsáveis pelo manuseio de amostras devem ser vacinados contra tétano, difteria, hepatite B e os estabelecidos no PCMSO, de acordo com a Norma Regulamentadora 32.
- **7.5** O ambiente do laboratório deve ser controlado, a fim de evitar contaminantes como poeira ou agentes microbianos transportados pelo ar.
- 7.6 Evitar vibração na superfície da bancada onde o teste é realizado.
- 7.7 Não utilizar os reagentes se as embalagens de alumínio estiverem abertas ou quebradas na chegada.
- **7.8** Não utilizar os reagentes se o dessecante não estiver presente ou quebrado dentro das embalagens dos reagentes.
- 7.9 Não remover o dessecante das embalagens dos reagentes após aberto.
- **7.10** Fechar as embalagens de alumínio imediatamente após o uso. Remover qualquer excesso de ar antes da vedação.
- **7.11** Proteger os reagentes contra a umidade. A exposição prolongada à umidade pode afetar o desempenho do produto.
- **7.12** Não trocar os componentes entre diferentes lotes dos kits. Recomenda-se que os componentes entre dois kits do mesmo lote também não sejam trocados.
- **7.13** Evitar contaminação cruzada das amostras utilizando ponteiras descartáveis e trocando-as após a manipulação de cada amostra.
- **7.14** Evitar contaminação cruzada entre os reagentes do kit utilizando ponteiras descartáveis e trocando-as entre o uso de cada uma.
- 7.15 Não utilizar o kit após a data de validade apresentada na etiqueta externa.

- **7.16** Tratar todas as amostras como potencialmente infectantes. Todas as amostras devem ser manuseadas em Nível de Biossegurança 2, como recomendado pela legislação em vigor.
- **7.17** Armazenar e extrair as amostras separadamente de outros reagentes e utilizar uma sala dedicada ao manuseio.
- 7.18 O fluxo de trabalho no laboratório deve proceder de maneira unidirecional, começando na área de extração e passando para a amplificação e área de análises de dados. Não retornar as amostras, equipamentos e reagentes para a área onde as primeiras etapas foram realizadas.
- 7.19 O uso de plásticos descartáveis é recomendado na preparação dos componentes líquidos ou na transferência dos componentes para sistemas automatizados, a fim de evitar contaminação cruzada.
- 7.20 Os resíduos gerados durante a utilização do kit devem ser descartados, de acordo com as diretrizes e regras de descarte de resíduos químicos e substâncias biológicas do laboratório, conforme legislação em vigor.
- **7.21** Os respingos provocados acidentalmente durante o manuseio das amostras devem ser absorvidos por lenços de papel umedecidos com hipoclorito, e em seguida, com água.
- **7.22** Outros resíduos gerados (exemplo: ponteiras usadas para amostras) devem ser manuseados como potencialmente infectantes e descartados, de acordo com as diretrizes e regras relativas a resíduos laboratoriais.
- **7.23** A detecção de patógenos sexualmente transmissíveis depende da coleta de amostras de alta qualidade, do seu rápido transporte para o laboratório e do armazenamento adequado antes dos testes laboratoriais.
- **7.24** As amostras devem ser transportadas para o laboratório imediatamente e processadas/testadas o mais rápido possível após a coleta, devido à sensibilidade de vários patógenos a influências externas.
- **7.25** Todas as amostras devem ser rotuladas adequadamente, de acordo com o procedimento do laboratório. O manuseio adequado das amostras é vital para proteger o ácido desoxirribonucleico (DNA) bacteriano da degradação.
- **7.26** Antes da coleta das amostras, não é necessária nenhuma preparação especial do paciente. Não é necessário pré-tratamento das amostras.
- 7.27 Todas as amostras devem ser coletadas usando técnicas padrão de laboratório ou médico.

9. AMOSTRAS: PREPARAÇÃO E RECOMENDAÇÕES

Este ensaio é indicado para uso com ácido nucleico extraído de amostras respiratórias a partir de swabs nasofaríngeo e orofaríngeo.

As amostras devem ser claramente identificadas em códigos ou nomes, a fim de evitar resultados com erros de interpretação.

Para longos períodos de armazenamento recomenda-se que todas as amostras fiquem a -20°C até a extração. Nesse caso, a amostra deverá ser totalmente descongelada e levada à temperatura ambiente antes do teste. Homogeneizar bem a amostra antes da preparação. Ciclos de congelamento e descongelamento não são recomendados.

NOTA: A Mobius não se responsabiliza por resultados/diagnósticos que sejam obtidos através da utilização de equipamentos e amostras não previstas na instrução de uso.

Prosseguir a preparação da amostra de acordo com as recomendações que aparecem nas instruções de uso do kit de extração utilizado.

IMPORTANTE:

- Os resultados do teste devem ser avaliados por um profissional de saúde no contexto da história médica, sintomas clínicos e outros testes de diagnóstico.
- Adicionar o Controle Interno a cada uma das amostras é uma etapa muito importante para confirmar o sucesso do procedimento de extração de ácido nucleico e para verificar possível inibição da PCR.

10. PREPARAÇÃO DOS COMPONENTES E AVISOS

9.1. MIX CFH

Antes de utilizar, centrifugar brevemente (pulso) para concentrar o componente no fundo dos tubos.

Reconstituir a mix na área pré-PCR do laboratório. Abrir o tubo da mix liofilizada com cuidado para evitar que o *pellet* se desfaça e adicionar 390 µL do Tampão de Reidratação fornecido no kit. Homogeneizar gentilmente com a pipeta. Centrifugar brevemente (pulso) para remover bolhas geradas durante a homogeneização.

Após reconstituída, a MIX CFH pode ser armazenada de 2 a 8°C por até 4 horas, para longos períodos, armazenar a -20°C. É recomendado separar em alíquotas para minimizar os ciclos de congelamento/descongelamento.

9.2. CONTROLE POSITIVO (CP)

Antes de utilizar, centrifugar brevemente (pulso) para concentrar o componente no fundo do tubo.

Reconstituir o Controle Positivo liofilizado com 100 μ L de Água livre de RNase/DNase fornecida com o kit. Uma vez que o Controle Positivo tenha sido reconstituído, armazenar a -20°C. É recomendado armazenar em alíquotas para minimizar os ciclos de congelamento/descongelamento.

9.3. CONTROLE NEGATIVO (CN)

Solução pronta para uso. Antes de utilizar centrifugar brevemente (pulso) para concentrar o componente no fundo do tubo.

11. EQUIPAMENTOS E FERRAMENTAS USADOS EM COMBINAÇÃO COM O KIT

10.1. MICROPIPETAS

As micropipetas devem estar calibradas para dispensar o volume correto necessário para o teste e devem ser submetidas a descontaminações regulares das partes que podem acidentalmente entrar em contato com a amostra. Elas devem ser certificadas e devem estar com seus certificados válidos a fim de mostrar precisão de 1% e uma exatidão de ±5%.

10.2. TERMOCICLADOR EM TEMPO REAL

O kit XGEN MULTI COVID-19/FLU/HRSV é direcionado para uso em conjunto com equipamentos de PCR em Tempo Real.

IMPORTANTE: Os usuários finais devem seguir estritamente a instrução de uso fornecida pelo fabricante.

12. CONTROLE DE PRÉ-ENSAIO E OPERAÇÕES

- 11.1 Verificar a data de validade do kit impresso na etiqueta externa da caixa.
- 11.2 Verificar se os componentes líquidos não estão contaminados por partículas visíveis a olho nu ou grumos. Observar se há ruptura na caixa de transporte e se não há derramamento de líquido dentro da caixa.
- **11.3** Ligar os termocicladores e verificar as configurações para garantir a utilização do protocolo de ensaio correto.
- **11.4** Seguir estritamente o manual de equipamentos fornecidos pelo fabricante para a correta configuração dos termocicladores em Tempo Real.
- 11.5 Verificar se as micropipetas estão configuradas para o volume necessário.
- 11.6 Verificar se todos os outros equipamentos estão prontos para o uso.
- **11.7** Em caso de problemas, não continuar o teste e comunicar ao responsável pelo laboratório.

13. PROTOCOLO

IMPORTANTE: Um exemplo de gabarito para dispensação dos reagentes é informado no item 13 - "Gabarito do Teste".

12.1 CONTROLES DE AMPLIFICAÇÃO

É obrigatório validar cada sessão de amplificação com reações de Controle Negativo e Controle Positivo.

12.2 PROCEDIMENTO DE AMPLIFICAÇÃO

- 1. Adicionar 15 μL da MIX CFH em cada poço de acordo com o número de reações necessárias, incluindo amostras e controles.
- 2. Adicionar 5 μL de RNA extraído de cada amostra, Controle Positivo reconstituído (frasco vermelho) e Controle Negativo (frasco violeta) em poços diferentes e fechar a placa/microtubos.
- 3. Centrifugar brevemente a placa/microtubos.
- 4. Colocar a placa/microtubos no equipamento.
- **5.** Após configurar a programação como descrito no subitem 12.3 "Programação da PCR", iniciar a corrida no termociclador.

12.3 PROGRAMAÇÃO DA PCR

A programação deve ser feita conforme descrito abaixo:

ETAPA	TEMPERATURA	ТЕМРО	# CICLOS
Hold	45°C	15 min.	1
Hold	95°C	2 min.	1
Ciclo PCR	95°C	10 seg.	45
(*Coleta de Dados)	63°C (*)	50 seg.	40

AVISO: Configurar o equipamento com a correta programação da PCR seguindo as instruções fornecidas pelo fabricante.

12.4 SELEÇÃO DE DETECTORES

Selecionar os detectores informados na tabela abaixo, conforme o manual de instrução do equipamento a ser utilizado:

	PATÓGENO	REPORTER
MIX CFH	HRSV	CY5
	Controle Interno (CI)	VIC
	Influenza	ROX
	SARS-CoV-2	FAM

14. GABARITO DO TESTE

Exemplo de gabarito para posicionamento das amostras e controles para a análise com o kit.

LEGENDA:

- A1 A10 = Amostras;
- CP = Controle Positivo;
- CN = Controle Negativo;
- FUNDO AMARELO = Mix CFH.

15. CONTROLE DE QUALIDADE INTERNO

14.1 CONFIGURAÇÕES PRÉ-ANÁLISE

É necessária a realização de ajuste de configuração para avaliação dos parâmetros de validação da corrida.

14.2 VALIDAÇÃO DA CORRIDA

Validar a corrida como descrito na tabela abaixo:

Critério	Alvos	Controle Interno	Resultado do Ensaio
Controle Negativo	Não detectado	Detectado	Válido
	Detectado (1)	Detectado	Inválido
Controle Positivo	Detectado (2,4)	Detectado ³	Válido

NOTA:

- ¹ Se existir potencial contaminação (aparecimento de curva de amplificação ou conjunto de curvas em amostras com Ct abaixo de 40) na amostra Controle Negativo, os resultados obtidos não são interpretáveis e toda a corrida (incluindo extração) deve ser repetida.
- ² Controles Positivos e qualquer amostra positiva irá mostrar um traçado de fluorescência exponencial. Qualquer amostra exibindo um traço exponencial é considerada como positiva.
- ³ O controle positivo inclui o alvo do gene endógeno RNase P; portanto, os sinais de amplificação são observados em todos os canais alvo, incluindo o Controle Interno Endógeno.
 - ⁴ As sondas possuem diferentes níveis de fluorescência, por isso as curvas para diferentes alvos apresentam aspectos diferentes.

Se todos os controles estiverem dentro dos intervalos especificados, validando a corrida, verificar as amostras clínicas.

16. ANÁLISE DE AMOSTRAS

O usuário deve realizar uma análise cuidadosa no gráfico de amplificação para cada amostra e para todos os alvos após os parâmetros serem configurados, para confirmar a presença ou ausência do traço exponencial.

Analisar os resultados das amostras como descrito na tabela abaixo:

Critério	Alvos	Controle Interno	Resultado
	Ct < 40 ⁽¹⁾	Detectado	Amostra Positiva Válida para o patógeno que apresentou amplificação no canal.
Amostra	Ct ≥ 40 ou Não detectado	Detectado	Amostra Negativa Válida ⁽³⁾
	Ct < 40 ⁽¹⁾	Não detectado (2)	Amostra Positiva Válida
	Ct ≥ 40 ou Não detectado	Não detectado (4)	Amostra Inválida

NOTA:

- ¹ As sondas possuem diferentes níveis de fluorescência, por isso as curvas para diferentes alvos apresentam diferentes aspectos.
- ² Caso não haja amplificação do Controle Interno pode haver amostra fortemente positiva. Um alto número de cópias do alvo pode causar amplificação preferencial de ácidos nucleicos específicos do alvo.
- ³ O resultado negativo pode ser devido à ausência do alvo na amostra ou a presença de uma quantidade de cópias abaixo do limite de detecção do kit.
- ⁴ Todos os Controles Internos de amostras negativas devem apresentar traço positivo (exponencial) de amplificação. Caso não haja amplificação do Controle Interno pode haver

problemas de purificação. É recomendado repetir o ensaio diluindo a amostra 1:10 ou repetir a extração para checar por possíveis problemas de inibição.

Em caso de resultado de interpretação duvidoso, recomenda-se verificar o correto desempenho de cada uma das etapas e revisar os parâmetros e a forma exponencial da curva. Caso a situação não seja resolvida, recomenda-se repetir o ensaio, de preferência em duplicata. Os resultados do teste devem ser avaliados por um profissional de saúde no contexto da história médica, sintomas clínicos e outros testes de diagnóstico.

17. SOLUÇÃO DE PROBLEMAS

PROBLEMA	CAUSA	SOLUÇÃO
	Configuração incorreta da temperatura na programação da PCR no equipamento.	Verificar se a configuração está de acordo com a instrução de uso.
CONTROLE POSITIVO SEM SINAL DE AMPLIFICAÇÃO	Aplicação incorreta do CP. Homogeneização inadequada ou descongelamento em temperatura diferente da ambiente.	Verificar as etapas de trabalho por meio do esquema de pipetagem e repetir o procedimento, se necessário. Conferir a calibração das micropipetas.
	Condições de armazenamento para um ou mais componentes do kit não estão de acordo com a instrução de uso ou a data de validade do kit expirou.	Verificar as condições de armazenamento e a data de validade (verificar na etiqueta do produto) dos reagentes e repetir o procedimento, se necessário.
CONTROLE INTERNO COM SINAL FRACO OU SEM SINAL DE AMPLIFICAÇÃO	As condições da PCR não cumprem o protocolo.	Verificar as condições da PCR e repetir o procedimento de acordo com a instrução de uso, se necessário.
	A PCR foi inibida, não houve adição ou o volume de Controle Interno adicionado na etapa de extração não foi suficiente.	Verificar se o método de extração utilizado é compatível com o kit. Sinal positivo muito forte de um alvo pode, por vezes, inibir a fluorescência do Controle Interno.
CONTROLE NEGATIVO COM SINAL DE AMPLIFICAÇÃO	Contaminação durante a extração ou durante a preparação da PCR.	Repetir a PCR com novos reagentes em replicatas. É recomendado realizar a pipetagem do Controle Positivo após todos os outros reagentes. Certificar-se de que o local de trabalho e os instrumentos são descontaminados em intervalos regulares.

IMPORTANTE:

- A interpretação dos resultados deve ser feita sob a supervisão do responsável do laboratório para reduzir o risco de erros e resultados mal interpretados.
- Quando os resultados do laboratório são transmitidos do laboratório para o centro de informática, deve se prestar muita atenção para evitar erro na transferência de dados.
- Se um ou mais dos problemas descritos acima acontecer, depois de verificá-los, informe qualquer problema residual ao supervisor para futuras ações.

18. LIMITAÇÕES

- 17.1 Para o usuário deste kit recomenda-se a leitura cuidadosa e a compreensão da Instrução de Uso. A adesão estrita ao protocolo é necessária para a obtenção de resultados confiáveis.
- 17.2 Em particular, a veracidade da amostra, a pipetagem de reagentes, a aplicação de fluxo de trabalho correto, juntamente com a etapa da programação cuidadosa do termociclador é essencial para que a detecção dos ácidos nucleicos seja precisa e reprodutível.
- **17.3** A determinação de um ou mais patógenos em uma amostra do paciente tem implicações médicas, sociais, psicológicas e econômicas.
- 17.4 O uso deste kit deve ser limitado ao pessoal treinado na técnica de RT-PCR e no uso de kits XGEN.
- 17.5 Este kit deve ser estritamente utilizado de acordo com as BPL e com estas instruções de uso, a fim de evitar a contaminação do PC e/ou amostras clínicas que possam levar a resultados falso-positivos ou errôneos.
- 17.6 O desempenho do kit foi verificado e validado usando os procedimentos fornecidos nas instruções de uso apenas. Modificações nesses procedimentos podem alterar o desempenho do teste.
- 17.7 O desempenho deste kit foi avaliado para uso apenas com material de amostra humano.
- **17.8** Testes de outros tipos de amostra (exceto as listadas na Instrução de Uso) podem levar a resultados imprecisos. Outros tipos de amostra não foram validados.
- **17.9** Este é um kit qualitativo que não fornece um valor quantitativo para os patógenos detectados na amostra. Não há correlação entre os valores de *Ct* obtidos e a quantidade de patógenos na amostra coletada.
- 17.10 Os resultados confiáveis deste teste requerem a coleta apropriada de amostras, bem como procedimentos adequados de transporte, armazenamento e processamento de amostras e kits. O não cumprimento desses procedimentos produzirá resultados incorretos, levando a valores positivos e negativos falsos ou a resultados inválidos.
- **17.11** Níveis baixos de patógenos podem ser detectados abaixo do limite de detecção, mas os resultados podem não ser reprodutíveis.
- 17.12 Este teste não se destina a substituir nenhum exame médico realizado por um profissional. Os resultados devem ser interpretados em conjunto com outros achados laboratoriais e clínicos (história clínica, dados epidemiológicos ou outros dados) disponíveis para o clínico examinando o paciente.
- **17.13** É recomendado que a confidencialidade, aconselhamento apropriado e avaliação médica sejam considerados como aspectos essenciais na sequência dos testes.

19. GARANTIA DA QUALIDADE

A Mobius Life Science fornece garantia de todos os produtos por ela revendidos dentro dos seguintes termos:

18.1 GARANTIA

O KIT XGEN MULTI COVID-19/FLU/HRSV é garantido pela Mobius contra defeitos de produção pelo período de validade do produto, salvo especificações em contrário a constar da proposta.

• A garantia abrange defeitos de produção.

18.2 EXCEÇÕES NA GARANTIA

• Todos os produtos com defeitos oriundos de mau uso, imperícia, conservação ou armazenagem inadequada.

18.3 EXTINÇÃO DA GARANTIA

• Quando não for utilizado de acordo com sua finalidade de aplicação.

20. INFORMAÇÕES DO FABRICANTE E DISTRIBUIDOR

FABRICANTE:

CERTEST BIOTEC

Endereço: CALLE J, N° 1, 50840, SAN MATEO DE GÁLLEGO, ZARAGOZA, ESPANHA

DISTRIBUIDOR:

Mobius Life Science Comércio de Produto para Laboratórios Ltda.

Rua Jandaia do Sul 441 - Pinhais - PR - CEP: 83.324-440

Telefone: (41) 3401-1850

E-mail: suporte@mobiuslife.com.br | Website: www.mobiuslife.com.br |

CNPJ: 04.645.160/0002-20

21. REGISTRO ANVISA

80502070096